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Abstract

A binary monolayer adsorbed on a solid surface can separate into distinct phases that further self-assemble into

various two-dimensional patterns. The surface stresses in the two phases are different, causing an elastic field in the

substrate. The self-organization minimizes the combined free energy of mixing, phase boundary, and elasticity. One can

obtain diverse patterns by using substrates with various crystalline symmetries. Consider the pattern of a set of periodic

stripes. The stripe orientation depends on the anisotropy in surface stress, substrate stiffness, and phase boundary

energy. A more powerful and flexible way is to use a layered substrate. Surface properties designed for the applications

of those patterns can be obtained by choosing appropriate materials and structures for the monolayer and the top layer

of the substrate. The subsequent layers of the substrate provide the required stiffness anisotropy, the effect of which is

passed to the monolayer patterns through the elastic field. We solve the elastic field in the anisotropic, heterogeneous,

three-dimensional half-space by using the Eshelby–Stroh–Lekhnitskii formalism and the Fourier transformation.

Depending on the thicknesses and the degrees of the stiffness anisotropy of the substrate layers, the lowest energy stripes

can have tunable equilibrium size and orientation. We also discuss other possibilities of manipulating the phase patterns

by engineering the elastic field.

� 2003 Elsevier Ltd. All rights reserved.

Keywords: Nanostructure; Self-organization; Surface stress; Multilayer; Anisotropic elasticity
1. Introduction

One challenge in nanofabrication is to make large-scale ordered and patterned structures with nanoscale

features, which would open new possibilities for applications, e.g., serving as memories, or as templates for

making devices. Mesoscopic self-organization on solid surfaces offers many opportunities in making such

nanostructures. Experiments have shown that adsorbed monolayers on solid surfaces, when separating into
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distinct phases, can self-assemble into various two-dimensional patterns (Kern et al., 1991; Zeppenfeld et al.,

1995; Pohl et al., 1999; Ellmer et al., 2001). The observed feature sizes of the phase patterns range from

nanometers to hundreds of micrometers, and are usually stable on annealing. The limited tunability of the

phase patterns impedes the use of these nanostructures. In the following, we first briefly review the
mechanism of pattern formation, and then examine how to guide these self-assembled phase patterns into

designed order.

The self-organization minimizes the combined free energy of mixing, phase boundary, and an elastic field

(Alerhand et al., 1988; Ng and Vanderbilt, 1995; Suo and Lu, 2000). Suppose that the monolayer consists of

two atomic species, one of which could be identical to that of the substrate. When the two species have a

large enthalpy of mixing, atoms are more likely to be found near identical atoms than if they were mixed

randomly. Consequently, the monolayer separates into two phases, and the concentration field on the solid

surface becomes nonuniform. The surface stresses in the two phases are different (Ibach, 1997), inducing an
elastic field in the substrate. To relieve the surface stress nonuniformity, large phases will break into small

phases. The total length of phase boundaries, however, increases and so does the phase boundary energy. It

is the competition between the phase boundary energy and the elastic energy that stabilizes the phase

patterns and selects an equilibrium phase size.

Because the surface stress difference in distinct phases is accommodated through the substrate defor-

mation, one immediate way to manipulate the phase patterns is to modify the elastic field. Previously, we

have studied the effect of symmetry breaking of various modes on phase patterns. When the system was

isotropic, there was no preferred orientation in the plane of the monolayer, and therefore irregular patterns
formed. When some form of anisotropy was introduced, the symmetry was broken, and irregular patterns

lined up in some particular directions. We investigated how to obtain diverse patterns by using substrates

with various crystalline symmetries (Lu and Suo, 2002b; Gao and Suo, 2003b). Stripes could orient along

either the crystalline axes, or certain directions off them. The off-axis stripes might organize into a mesoscale

herringbone structure, further relaxing the elastic energy (Lu and Suo, 2002a; Gao et al., 2002). Phase

diagrams were constructed with respect to varying parameters that represented anisotropy in phase

boundary energy, surface stress, and substrate stiffness.

This paper investigates the possibility of manipulating the self-assembled monolayer patterns by using
a layered substrate. Surface stress and phase boundary energy, depending on the short-range interatomic

interactions, can vary considerably with different material and structural selections of the monolayer and

the first substrate layer. The subsequent underlying layers of the substrate provide certain degrees of

stiffness anisotropy, the effect of which is passed to the monolayer patterns through the long-range

elastic field. Those considerations give rise to a large parameter space that can be used to tailor the

experiments.

As illustrated in Section 2, the elastic field in the substrate is coupled with the concentration field on

the substrate surface through the concentration-dependent surface stress. We use the Fourier series to
represent the concentration field of a set of periodic stripes. The equilibrium stripe orientation can be

determined by minimizing a free energy function, as shown in Section 3. This study is concentrated on

how to manipulate the phase patterns by engineering the elastic field, so that the phase boundary energy

is assumed isotropic throughout this paper. The elasticity boundary value problem is solved by using the

Eshelby–Stroh–Lekhnitskii representation (Eshelby et al., 1953; Stroh, 1958; Lekhnitskii, 1963; Suo,

1990; Ting, 1996; Gao and Suo, 2003b). Section 4 assumes that the substrate is a homogeneous material,

and studies the orientation of stripes on the (1 0 0) surface of a cubic crystal with anisotropic surface

stress. Section 5 gives the general elastic solution in a layered structure, and studies the stripes on the
substrate of two different isotropic materials, an isotropic material on a cubic crystal, and two cubic

crystals. Any crystal plane and elastic anisotropy can be treated, and the equilibrium size and orientation

are tunable. Section 6 discusses other possibilities to affect the elastic field and manipulate the phase

patterns.
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2. Substrate deformation caused by monolayer concentration nonuniformity

Fig. 1 shows the system to be modeled. The monolayer coincides with the plane ðx1; x2Þ. Let a continuous
function Cðx1; x2Þ be the concentration field in the monolayer. The substrate is semi-infinite, occupying the
half space x3 < 0. The substrate may be a homogeneous material or a layered structure. The layers are

different in constituting materials or crystalline orientations. We assume that the layer interfaces parallel

with each other, so that the substrate is heterogeneous only in the x3 direction.

The surface stress is the excess work per unit area done when the surface enlarges per unit strain (Ibach,

1997). In general, the surface stress is a second-rank tensor fab. (Greek subscripts run from 1 to 2.) We

assume that the surface stress is linear in the concentration C. That is, when the concentration changes by

DC, the surface stress changes by
Dfab ¼ /abDC: ð1Þ
The slope tensor /ab depends on the materials system of the adlayer and several marginal atomic layers of

the substrate. It can be measured by the wafer curvature method, or determined by electronic structure

calculations. We treat it phenomenologically in this study.

As illustrated in Fig. 1, the principal components of the slope tensor, /1 and /2, are assumed to be in the
direction x1 and x2. Following Gao and Suo (2003b), we define the surface stress anisotropy parameter as
R ¼ /2 � /1ffiffiffiffiffiffi
2/

p ; ð2Þ
where / ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2

1 þ /2
2

q
measures the magnitude of the slope tensor. R is in the range �16R < 1. When

R ¼ 0, /1 ¼ /2, and the slope tensor is isotropic. We should point out that even if the substrate is elastically

isotropic, the surface stress could be anisotropic because of the possibly anisotropic atomic structure in the

adlayer (Ng and Vanderbilt, 1995; Ibach, 1997).

When the concentration field is uniform, from (1), the surface stress is also uniform, so that the semi-

infinite substrate is unstrained. When the concentration field is nonuniform, corresponding to concentra-

tion patterns, the surface stress is also nonuniform, causing an elastic field in the substrate. The elasticity

boundary value problem is specified as follows.
Fig. 1. Schematic representation of the monolayer–substrate system. The substrate can be a layered structure.
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Assume that the deformation in the substrate is infinitesimal, and each layer of the substrate is

linearly elastic and generally anisotropic. The stress tensor rij relates to the elastic displacement vector ui
as
rij ¼ cijkluk;l; ð3Þ
where, l stands for differentiation with respect to the coordinate xl. Latin subscripts run from 1 to 3. The

repeated subscripts imply the summation convention. For each layer, the stiffness tensor cijkl is known once

the material and its crystallographic orientation are specified.

The equations of mechanical equilibrium are standard, i.e., rij;j ¼ 0. Together with (3), we can write the

field equations that govern the elastic displacements:
cijkluk;lj ¼ 0: ð4Þ

We will have N sets of such equations if there are N layers. The traction vector t ¼ ðr31; r32; r33ÞT on the
substrate surface (x3 ¼ 0) is (Suo and Lu, 2000; Gao and Suo, 2003b)
t ¼ /1

oC
ox1

;/2

oC
ox2

; 0

� �T

: ð5Þ
The normal traction r33 is zero because there is no z-component of the surface stress tensor. There could be

other mechanisms leading to the normal component (Gurtin and Murdoch, 1976; Murdoch, 1976;
Thomson et al., 1986). However, our above argument is generally true for adsorbate-induced surface

stresses (Ibach, 1997). This fact tells us that any normal deformation will not affect the elastic free energy, as

will be shown in Eq. (6) shortly. Assume that the layers are ideally bonded at the interfaces, and we will

have 2ðN � 1Þ continuity conditions. Another boundary condition is that the stress tensor vanishes as

x3 ! �1.

Consequently, for any given concentration field Cðx1; x2Þ, the elastic equilibrium defines an elasticity

boundary value problem in the semi-infinite, anisotropic, heterogeneous substrate with prescribed

surface traction. We combine the Eshelby–Stroh–Lekhnitskii formalism (Eshelby et al., 1953; Stroh,
1958; Lekhnitskii, 1963; Suo, 1990; Ting, 1996) and the Fourier transformation to determine the elastic

field.

One can easily confirm that the elastic energy stored in the volume of the substrate is
R
ð1=2Þr3aua dA, a

positive quantity. The integral extends over the entire substrate surface. Since the traction boundary

condition is fixed, in building up the elastic field in the substrate, the traction does work
R

r3aua dA. This
work comes from the surface stress difference between distinct phases, and reduces the total free energy of

the monolayer–substrate system. Consequently, the elastic free energy is
Gelastic ¼
Z

1

2
r3aua dA�

Z
r3aua dA ¼ �

Z
1

2
r3aua dA; ð6Þ
which can also be confirmed from the Legendre transformation. The elastic free energy is always negative.
The larger the elastic deformation in the substrate, the lower the free energy of the monolayer–substrate

system.

With a given traction boundary condition (5), the strain and the displacement fields are linear in the

compliance tensor. Consequently, the elastic free energy is also linear in the compliance tensor, and is

quadratic in the slope tensor /ab. The last observation shows that the sign of the slope tensor does not

matter.

The total free energy of the monolayer–substrate system can be written as
G ¼
Z

gm

�
þ gb �

1

2
r3aua

�
dA: ð7Þ
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The term gm represents the free energy of mixing, and is a function of the concentration. The phase

boundary energy, represented by the term gb, in general is a function of the concentration and the con-

centration gradient. Detailed forms of gm and gb are unimportant to this work.
3. Equilibrium orientation of periodic stripes

Consider a set of periodic stripes as shown in Fig. 1. The concentration is now nonuniform, and con-

strained to vary in the direction x. The orientation angle h is measured from the x1 axis to the x axis.

Represent the concentration field by a Fourier series,
CðxÞ ¼
Xþ1

n¼�1
Cn exp

i2npx
k

� �
¼

Xþ1

n¼�1
Cn exp

i2np
k

ðh1x1
�

þ h2x2Þ
	
; ð8Þ
where x ¼ haxa, ðh1; h2Þ ¼ ðcos h; sin hÞ is the direction vector of axis x in coordinates ðx1; x2Þ, and k is the

period of the concentration field. To ensure the concentration is real-valued, we require that Cð�nÞ ¼ Cn,

where a bar on the top of a quantity denotes the complex conjugate. The average concentration C0 remains

constant, since no atoms leave or enter the monolayer during annealing.

From (5) and (8), the traction vector on the substrate surface (x3 ¼ 0) becomes
r31 ¼ i/1h1
Xþ1

n¼�1

2npCn

k
exp

i2np
k

ðh1x1
�

þ h2x2Þ
	
;

r32 ¼ i/2h2
Xþ1

n¼�1

2npCn

k
exp

i2np
k

ðh1x1
�

þ h2x2Þ
	
;

r33 ¼ 0:

ð9Þ
As will become clear later, such a Fourier representation will simplify the solution of the elasticity boundary

value problem.

The free energy density of mixing, gm, is independent of h. We assume that the phase boundary energy is

isotropic in this study, so that gb is also independent of h. So long as the h-dependence is concerned, Gelastic

represents the free energy.
The elastic free energy per unit area is calculated by the elastic free energy in a period divided by the

period, namely,
eGGelastic ¼ � 1

k

Z k

0

1

2
r3aua dx: ð10Þ
Consequently, the equilibrium orientation of a set of periodic stripes can be determined by minimizing Eq.

(10) as a function of h with varying period k, Fourier coefficients Cn (n 6¼ 0), and parameters that represent

anisotropy.
4. Stripes on a homogeneous substrate

Consider a substrate of a single material with a given crystalline orientation. This substrate is subject to

surface tractions (9), and therefore the elastic field is a plane field in the plane spanned by x3 and the vector
ðh1; h2Þ. From (9), since generally /2 6¼ 0, the substrate deformation is a combination of the inplane and

antiplane strain field. We solve this plane field by using the Eshelby–Stroh–Lekhnitskii formalism. The
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solution method discussed below basically follows Gao and Suo (2003b), and will be extended to a layered

structure in Section 5.

Since the field equations (4) are homogeneous, we look for solution of the form
ul ¼ Alf ðzÞ; z ¼ xþ px3 ¼ h1x1 þ h2x2 þ px3: ð11Þ

Here f is a one-variable function, p a scalar, and Al a vector. As will be clear shortly, p is a complex

number. Substitute (11) into (4), write p ¼ h3, and we obtain that
cijlmhjhmAl ¼ 0: ð12Þ
In deriving (12), we have eliminated the factor d2f =dz2. To obtain a nontrivial solution of vector Al, the

coefficient matrix cijlmhjhm must be singular, i.e., detðcijlmhmhjÞ ¼ 0. This is a generalized eigenvalue problem

with p being the eigenvalue and Al the eigenvector.

Remember h1 and h2 are direction cosines of axis x, and h3 ¼ p, so that detðcijlmhmhjÞ is a sixth-order
polynomial in p with real coefficients. If p were also real, the matrix cijlmhmhj would be positive-definite (due

to the requirement that the strain energy be positive), and the linear equations (12) would have only trivial

solution. Therefore, the six roots form three pairs of complex conjugate. Denote the three eigenvalues with

positive imaginary parts by pa, a ¼ 1, 2, 3, and the corresponding eigenvectors by Aka. Once the stiffness

tensor cijkl is specified, for a given direction ðh1; h2Þ, one can solve this eigenvalue problem (12) numerically.

Let f1ðz1Þ, f2ðz2Þ, f3ðz3Þ be three arbitrary analytic functions with respect to the three complex variables,

za ¼ h1x1 þ h2x2 þ pax3, a ¼ 1, 2, 3, respectively. The general solution of the displacement field is a linear

superposition:
ul ¼
X
a

AlafaðzaÞ þ
X
a

Ala
�ffað�zzaÞ: ð13Þ
This form ensures that the displacement is real-valued. The traction vector on any plane normal to the

x3 axis, t ¼ ðr13; r23; r33ÞT, is
ri3 ¼
X
a

Liaf 0
aðzaÞ þ

X
a

Lia
�ff 0
að�zzaÞ; ð14Þ
where the three vectors Lia are defined as
Lia ¼ ðci3l1h1 þ ci3l2h2 þ ci3l3paÞAla: ð15Þ
No summation convention is implied over underscored, repeated subscripts.

The Stroh matrix B ¼ iAL�1 has been proven to be a positive-definite Hermitian (Stroh, 1958). Split the

matrix into the real and the imaginary parts, B ¼Mþ iN, so thatM is symmetric and positive-definite, and

N is antisymmetric. These matrices have the same dimension as the compliance tensor. Though explicit

expressions can be derived, for convenience, these matrices are calculated numerically.

To determine the three functions f1ðz1Þ, f2ðz2Þ, f3ðz3Þ, we adopt the analytic continuation method de-

veloped by Suo (1990). Let f be a complex variable of the form f ¼ h1x1 þ h2x2 þ qx3, where q is an ar-
bitrary complex number with a positive imaginary part. Use the vector notation, fðfÞ ¼ ½f1ðfÞ; f2ðfÞ; f3ðfÞ�T.
On the plane x3 ¼ 0, the four complex variables, z1, z2, z3, f, all equal h1x1 þ h2x2, so that the traction vector

and the displacement vector are
u ¼ AfðhaxaÞ þ A�ffðhaxaÞ; ð16Þ

t ¼ Lf 0ðhaxaÞ þ L�ff 0ðhaxaÞ: ð17Þ

The traction on the substrate surface has been prescribed by a Fourier series in Eq. (9). By the principle

of linear superposition, we consider only one real-valued component. That is, for a given pair of 
n, the
traction vector is
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t ¼ aexpðij1x1 þ ij2x2Þ þ �aa expð�ij1x1 � ij2x2Þ; ð18Þ

where i ¼

ffiffiffiffiffiffiffi
�1

p
, ja ¼ jha, j ¼ 2np=k, and
a ¼ ði/1h1jCn; i/2h2jCn; 0ÞT: ð19Þ
The analytic functions fðfÞ must both satisfy the traction boundary conditions (17) and (18), and vanish

in the substrate far below the surface, namely, fðfÞ ! 0 as x3 ! �1. The latter comes from the analytic

continuation and the observation that the stress tensor, as well as f1ðz1Þ, f2ðz2Þ, f3ðz3Þ, is vanishing with

increasing depth. An inspection gives the solution
Lf 0ðfÞ ¼ �aa expð�ijfÞ: ð20Þ
The fact that q in f ¼ h1x1 þ h2x2 þ qx3 has positive imaginary part ensures that fðfÞ ! 0 as x3 ! �1.

From (16) and (20), the displacement on the substrate surface is
u ¼ Ba
j

expðij1x1 þ ij2x2Þ þ
B�aa

j
exp ð � ij1x1 � ij2x2Þ: ð21Þ
From (18) and (21), for one real-valued Fourier component of the traction boundary condition (9), the

elastic energy stored in the substrate per period is given by
j1j2

ð2pÞ2
Z p=j2

�p=j2

Z p=j1

�p=j1

1

2
tT � udx1 dx2 ¼

aTM�aa

j
: ð22Þ
Consequently, the elastic free energy per unit area, with respect to arbitrary concentration field on the

substrate surface, can be written as
eGGelastic ¼ �/2H
2p
k

� �Xþ1

n¼1

nC2
n

� �
; ð23Þ
where
H ¼ mTMm; ð24Þ

m ¼ ðh1 cosx; h2 sinx; 0ÞT: ð25Þ

In Eq. (23), H is the only term that depends on h. Consequently, �H represents the free energy so long as

the h-dependence is concerned. Since the matrix M only depends on the stiffness tensor of the substrate,

dimensionless vector m on direction h and the surface stress anisotropy, the equilibrium stripe orientation

heq, at which �H minimizes, is independent of the concentration field.

On an elastically isotropic substrate, depending on the degree of the surface stress anisotropy (measured
by the parameter R), the lowest energy stripes can be either parallel to, or at an angle from, the principal

axis of the surface stress tensor. This phenomenon has been studied, and a physical interpretation has been

given (Lu and Suo, 2002a; Gao et al., 2002). We next discuss the orientation of stripes on the (1 0 0) surface

of a cubic crystal with anisotropic surface stress.
4.1. The (1 0 0) surface of a cubic crystal with anisotropic surface stress

The stiffness tensor of a cubic crystal has three independent components, i.e., c11, c12, c44 in the ab-
breviated notation. Define two dimensionless parameters:
g ¼ c12=c11; ð26Þ



Fig. 2. (a) �c11H as a function of h for stripes on the Cu(1 0 0) surface. (b) The equilibrium orientation heq as a function of R.
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n ¼ c12 þ 2c44
c11

� 1: ð27Þ
The requirement that the strain energy be positive for any arbitrary strain tensor places the following re-

strictions: �0:5 < g < 1, and g � 1 < n < þ1. The parameter n measures the stiffness anisotropy of a cubic

crystal. For an elastically isotropic material, n ¼ 0, and g ¼ m=ð1� mÞ, where m is Poisson�s ratio. For Cu,
g ¼ 0:721, and n ¼ 0:6164; for Mo, g ¼ 0:3826, and n ¼ �0:1391.

Fig. 2(a) plots �c11H as a function of h for the Cu(1 0 0) surface, and Fig. 3(a) for the Mo(1 0 0) surface.
Symmetry operations dictate that once heq is an equilibrium orientation, �heq and 90�� heq are also. The

multiplicity can be removed by restricting 0�6 heq 6 45� and �16R6 0. Depending on R, there are dif-

ferent kinds of behaviors. When R ¼ 0, /1 ¼ /2, the surface stress is isotropic. The strain and displacement

fields are linear in the compliance tensor. Everything else being equal, because of the stiffness anisotropy,

stripes in different orientations can induce different amount of elastic energy in the substrate. The shear
3. (a) �c11H as a function of h for stripes on the Mo(1 0 0) surface. (b) The equilibrium orientation heq as a function of R.



Fig. 4. Phase diagram of stripe orientation with varying R and n for the (1 0 0) surface of a cubic crystal (g ¼ 0:5).
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modulus in any ðx; x3Þ plane is the same, but the tensile modulus in x direction is not. Consequently, stripes

with concentration field varying along the most compliant direction in tension will relax elastic energy the

most. The tensile modulus in x direction reaches the minimum at heq ¼ 0� when n > 0, or heq ¼ 45� when
n < 0 (Lu and Suo, 2002b), corresponding to the curves in Figs. 2(a) and 3(a) when R ¼ 0.

We then examine the combined effect of stiffness anisotropy and surface stress anisotropy. Fig. 2(b) plots

the equilibrium orientation heq as a function of the surface stress anisotropy parameter R for stripes on the

Cu(1 0 0) surface, and Fig. 3(b) for stripes on the Mo(1 0 0) surface. As shown in Fig. 2(a), for stripes on the

Cu(1 0 0) surface, when �0:961 < R < 0, the equilibrium orientation is heq ¼ 0�, and the equilibrium stripes
are along the /2 axis. When R is slightly larger than Rc ¼ �0:961, a new minimum appears at a nontrivial

angle. When R < Rc, this minimum becomes lower than that at h ¼ 0�. Consequently, the transition be-

tween the along-axis to off-axis stripes on the Cu(1 0 0) surface obeys the Landau theory of phase transition

of the first-order, as indicated by the dashed line in Fig. 2(b). For stripes on the Mo(1 0 0) surface, when

�0:0471 < R6 0 or �16R < �0:9037, the equilibrium stripes are off-axis. Between the two regions of off-

axis stripes is the one of along-/2 stripes. As shown by Fig. 3(a), when �0:0471 < R6 0, the function �c11H
minimizes at a nontrivial angle. As R goes to Rc ¼ �0:0471, heq goes to 0�. Consequently, the transition

between along-axis to off-axis stripes on the Mo(1 0 0) surface obeys the Landau theory of phase transition
of the second-order.

Fig. 4 shows a phase diagram of the orientation of stripes on the (1 0 0) surface of a cubic crystal, with

g ¼ 0:5, and varying R and n. When n > 0, similar to the Cu(1 0 0) surface, we see the transition from the

along-axis stripes to the off-axis ones. When n < 0, similar to the Mo(1 0 0) surface, we see the transition

from the off-axis stripes, to the along-axis stripes, and back to the off-axis stripes.

The orientation of stripes on the (1 1 0) surface of a cubic crystal with anisotropic surface stress has been

studied in Gao and Suo (2003b). Results presented there and in this paper suggest that one should observe

various stripe orientations in different monolayer–substrate systems.
5. Stripes on a layered substrate

The geometrical conventions used in this section have been shown in Fig. 1. Consider a substrate of two

layers. Layer I occupies the space �d < x3 < 0, and layer II extends to �1. In each layer, the general
solution of the elastic field in the plane spanned by vector ðh1; h2Þ and axis x3 has been given in Eqs. (13) and
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(14). The remaining task is to determine the three functions f1ðz1Þ, f2ðz2Þ, f3ðz3Þ for each layer by the

boundary and continuity conditions. The solution method developed in this section is quite general, and is

likely to find applications in other phenomena, such as thin films, ferroelastic multilayers.

Different from (20), let the solution in the first substrate layer be
LIf
0
IðfÞ ¼ Pexpð�ijfÞ þQexpðijfÞ; ð28Þ

AIfIðfÞ ¼
BIP

j
expð�ijfÞ � BIQ

j
expðijfÞ; ð29Þ
where P and Q are two constant vectors to be determined.
From (28) and (29), one can readily obtain f 0

I1ðfÞ, f 0
I2ðfÞ, f 0

I3ðfÞ, and fI1ðfÞ, fI2ðfÞ, fI3ðfÞ. One then replaces

the variable to f 0
I1ðz1Þ, f 0

I2ðz2Þ, f 0
I3ðz3Þ, and fI1ðz1Þ, fI2ðz2Þ, fI3ðz3Þ, and calculates the displacement field from

(13) and the stress field from (14). The calculation gives the displacement and stress fields in the layer I:
uI ¼
E

�
I P� Eþ

I Q

j
expðij1x1 þ ij2x2Þ þ

E�
I P� Eþ

I Q

j
expð�ij1x1 � ij2x2Þ; ð30Þ

tI ¼ T
�
I P

�
þ Tþ

I Q
�
expðij1x1 þ ij2x2Þ þ T�

I P



þ Tþ
I Q

�
exp ð � ij1x1 � ij2x2Þ; ð31Þ
where matrices T

I and E


I are
T�
Ilj ¼

X3

a¼1

LIlaL�1
Iaj expð�ijpIax3Þ;

Tþ
Ilj ¼

X3

a¼1

LIlaL�1
Iaj expðijpIax3Þ;

E�
Ilj ¼ i

X3

a¼1

AIlaL�1
Iaj expð�ijpIax3Þ;

Eþ
Ilj ¼ i

X3

a¼1

AIlaL�1
Iaj expðijpIax3Þ:

ð32Þ
Matrices T

I are dimensionless, and matrices E


I have the dimension of the compliance tensor. Matrices E

I

relate to matrices T

I as E


I ¼ BIT


I . One can obtain T�

I from Tþ
I , E

�
I from Eþ

I , by replacing variable x3 to
�x3, and vice versa. See Appendix A for the explicit expressions of those matrices when the material is

isotropic.

One can easily confirm from (32) that T

I jx3¼0 ¼ I, and E


I jx3¼0 ¼ BI. (I is the identity matrix.) For one
real-valued Fourier component (18) of the traction vector on the substrate surface, the above consideration

and Eq. (31) leads to
PþQ ¼ �aa: ð33Þ

At the layer interface x3 ¼ �d, the continuity conditions give rise to uI ¼ uII and tI ¼ tII. (The uniform

residual stresses in the substrate layers have only trivial Fourier components for any nontrivial wave-

number, and therefore won�t affect the above continuity conditions.) Layer II itself is semi-infinite, so that

by Section 4, uII and tII at the interface must satisfy the same relation as that between (18) and (21). The
above considerations lead to
E�
I P� Eþ

I Q ¼ BII T
�
I P



þ Tþ

I Q
�
; ð34Þ
where matrices T

I and E


I are all evaluated at x3 ¼ �d.
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Define two bimaterial matrices:
H1 ¼ BI � BII; ð35Þ

H2 ¼ BI þ BII: ð36Þ
The latter is a positive-definite Hermitian.
From Eqs. (33)–(36), vectors P and Q can be determined by solving
X �Y
I I

� 	
P

Q

� �
¼ 0

�aa

� �
; ð37Þ
where X ¼ H1T
�
I jx3¼�d and Y ¼ H2T

þ
I jx3¼�d .

Consequently, for one real-valued Fourier component, the elastic energy stored in the substrate per

period is given by
j1j2

ð2pÞ2
Z p=j2

�p=j2

Z p=j1

�p=j1

1

2
tT � udx1 dx2 ¼

aTFa

j
; ð38Þ
where F ¼ Re BIðXþ YÞ�1
Y� BIðXþ YÞ�1

X
n o

. Re stands for the real part of a complex number. Not only

does the matrix F depend on ðh1; h2Þ and the stiffness tensors of the two layers, also it is a function of jd.
Denote F ¼ FðcIijkl; cIIijkl; h; jdÞ.

When layer I and II are of the same material and crystalline orientation, H1 ¼ 0, so that P ¼ �aa, Q ¼ 0,
and F ¼M, recovering the results in Eqs. (18), (21), and (22). When layer II is a rigid material, BII ¼ 0, so
that X ¼ E�

I jx3¼�d and Y ¼ Eþ
I jx3¼�d . When layer II is absent or extremely compliant, Eq. (34) becomes

T�
I Pþ Tþ

I Q ¼ 0 at x3 ¼ �d, so we can let X ¼ �T�
I jx3¼�d and Y ¼ Tþ

I jx3¼�d .

When the concentration field is represented as Eq. (8), from (9), (10), (18), (19), and (38), the elastic free

energy per unit area can be written as
eGGelastic ¼ �/2 2p
k

� �Xþ1

n¼1

nC2
nHn

� �
; ð39Þ
where
Hn ¼ mTF cIijkl; cIIijkl; h;
2npd

k

� �
m; ð40Þ
and vector m has been given by Eq. (25). Only the terms Hn in Eq. (39) depend on h, but they are also

functions of n. To minimize Eq. (39) with respect to h, one needs to know all the Fourier components Cn of

the concentration field, which in turn depend on Hn and the detailed forms of gm and gb in Eq. (7).

Nonetheless, one single Fourier mode of the concentration field already gives a good approximation (Gao

et al., 2002). Consequently, to determine the equilibrium orientation of a set of periodic stripes on a layered

substrate, we minimize �H1 as a function of h with varying surface stress anisotropy R, stiffness tensors of
the two layers, and d=k (the normalized thickness of the first layer). In the next three subsections, we

concentrate on stiffness anisotropy, so that the surface stress tensor is assumed isotropic and fixed.

5.1. A layered substrate of two isotropic materials

Recall the inspection that the elastic free energy is linear in the compliance tensor since the traction

boundary condition is prescribed. If one uses a thin elastic substrate, the added compliance amplifies the
effect of elasticity, reducing the equilibrium phase size. One can even tune the equilibrium phase size by the

following hypothetical experiment. At a certain time, periodic stripes of period k are at equilibrium on a



Fig. 5. �lIH1 as a function of d=k with varying shear modulus ratio lII=lI of the two dissimilar isotropic materials in the substrate.
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homogeneous semi-infinite (or thick) substrate. Cut the substrate at x3 ¼ �d, and bond the thin layer–

monolayer system with another material that becomes layer II in Fig. 1. On annealing, atoms in the

monolayer will relocate on the substrate surface, and stripes will reach a new equilibrium period k0. The

ratio of the elastic constants and the thickness of the first layer can be varied, giving rise to a tunable k0.

In this section, the two substrate layers are assumed to be elastically isotropic, so that the stripe ori-

entation is of no concern here. The elastic free energy is approximately measured by �lIH1. Consequently,

if this quantity decreases, we will obtain a stronger elastic interaction and, accordingly, a smaller equi-

librium phase size, i.e., k0 < k. Let Poisson�s ratios equal, mI ¼ mII ¼ 0:3. Fig. 5 plots �lIH1 as a function of
d=k with varying shear modulus ratio lII=lI. We next discuss the results.

When the substrate is of a single isotropic material (lII=lI ¼ 1), obviously, �lIH1 does not change with

respect to d=k. This is our reference state. When d=k is fixed, if layer II is more compliant (lII=lI < 1),

�lIH1 becomes smaller; if layer II is stiffer (lII=lI > 1), �lIH1 becomes larger. When lII=lI is fixed, with

decreasing d=k, the function �lIH1 increases if lII=lI > 1, or decreases if lII=lI < 1. Consequently, to

amplify the equilibrium phase size (k0 > k), one can use a compliant material for layer II; to shrink the size

(k0 < k), a stiff material for layer II. In both cases, the purpose is more easily satisfied by making the first

layer as thin as possible. Also Fig. 5 shows that an extremely compliant material or nothing for layer II
(lII=lI ¼ 0) can remarkably change the elastic interaction, and the effect is unprecedented for a layered

substrate even with a very small shear modulus ratio, e.g., lII=lI ¼ 0:1.
5.2. A layered substrate of an isotropic material on a cubic crystal

Certain kinds of atoms can only form patterns on surfaces of some specific materials, which may not
provide the desired orientation preference. Without sacrificing the properties determined by the monolayer

and layer I, we can choose a layer II with the required stiffness anisotropy. This section shows that the

stiffness anisotropy of layer II can be passed to the monolayer patterns through the elastic field.

As an example, consider a layered substrate of an isotropic material on the Cu(1 0 0) surface. Let the x1
axis be in the direction h010i, and x2 in h001i. Assume that the c11 component of the stiffness tensor of the

isotropic material is equal to that of the copper. Fig. 6 plots �c11H1 as a function of h with different

thicknesses of the isotropic layer. When d=k ¼ 0, �c11H1 minimizes at heq ¼ 0� and heq ¼ 90�, retaining the

orientation preference of the Cu(1 0 0) surface (as predicted by Section 4.1). When d=k is sufficiently large,
�c11H1 becomes a constant, because there is no orientation preference for the isotropic layer.



Fig. 6. �c11H1 as a function of h with varying d=k. The substrate consists of an isotropic material (layer I) and a cubic crystal (layer II).
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5.3. A layered substrate of two cubic crystals

In general, the stripe orientation depends on the thicknesses and the degrees of the stiffness anisotropy of

the substrate layers. Let us consider a set of stripes on the Cu(1 0 0) surface. Cut the substrate at plane

x3 ¼ �d, rotate the thin layer–monolayer system about the x3 axis by 45�, and bond it with the remaining

bulk copper. This fictitious substrate is used to illustrate the competition between two layers of different

orientation preferences. On annealing, stripes may or may not rotate by 45�. Let the coordinates xi coincide
with the crystalline axes of layer II. A tensor transformation gives the stiffness components in layer I.

Obviously, when layer I is very thick, the stripe orientation follows the preference of layer I, i.e., heq ¼ 45�.
When layer I is very thin, the orientation follows the preference of layer II, i.e., heq ¼ 0� and heq ¼ 90�.

Fig. 7(a) plots �c11H1 as a function of h with varying d=k, illustrating several kinds of behaviors. When

d=k < 0:03858, �c11H1 minimizes at heq ¼ 0� and 90�. When 0:03858 < d=k < 0:0399, �c11H1 minimizes

at certain angles off the axes. When d=k > 0:0399, �c11H1 minimizes at heq ¼ 45�. Fig. 7(b) plots the
Fig. 7. (a) �c11H1 as a function of h with varying d=k. (b) The equilibrium orientation heq as a function of d=k. The substrate is

fictitious (see text).
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equilibrium orientation heq as a function of d=k. Due to symmetry, we restrict 0�6 heq 6 45�. The transitions
between the along-axis stripes and off-axis stripes can be of the first- or second-order.
6. Discussion

Self-organization on solid surfaces has been recognized as a promising way of growing uniform nano-

structures with long-range orders and regular sizes. The self-assembled phase patterns can be manipulated

by engineering the long-range elastic field. The system is analogous with an oscillator. A static force applied

to the oscillator does not change its vibrating frequency. Similarly, applying a uniform stress field in the

plane of the layer, e.g., through bending, does not affect the patterns. Nonetheless, one can use a substrate

with various crystalline symmetries. The orientation of a set of periodic stripes only depends on the an-

isotropy in the surface stress and the substrate stiffness tensor. Furthermore, this paper shows the possi-

bilities of a layered substrate. In this case, the orientation dependence involves the concentration field
within the stripes, but can be determined approximately by using the leading Fourier mode of the con-

centration field. The equilibrium phase size and orientation are tunable with various material and structural

selections of the substrate layers. The elastic field in the anisotropic, heterogeneous, three-dimensional half-

space is solved by extending the Eshelby–Stroh–Lekhnitskii formalism. The Fourier representation sim-

plifies the solution and enables our parametric study.

Our calculations (Sections 5.2 and 5.3) show that in order for the stiffness anisotropy of layer II to be in

effect pronouncedly, the thickness of the first layer d=k must be very thin compared with the feature size of

those patterns. Experiments tell us that typically / � 4 N/m, c11 � 1011 N/m2, and k ranges from na-
nometers to micrometers. Take k � 10 nm, jc11H1j � 1, and C1 ¼ 0:4, and we can obtain that the elastic free

energy per unit area (39) is about 1 J /m2, which is on the same order of 1 eV free energy per atomic site on a

solid surface (Somorjai, 1994). In order for the orientation preference to be effective, the variation of

function �c11H1 with respect to angle h should be also comparable with this magnitude. From Fig. 6, we

can conclude that d=k must be smaller than 0.1, which says that if k is 100 nm, the thickness of the thin layer

should be about 10 nm.

Though our cut-and-bond method may not be realistic to make a substrate with ultrathin layers, there

are many other ways, e.g., through epitaxial growth etc. One can tune the strain and stress inside the layers
by the lattice misfit between the different layers. The patterns, however, won�t be affected if the interfaces

between layers are flat. (The reason has been stated in the first paragraph of this section.) By contrast, we

can use the scheme proposed by Fig. 8(b). It is well known that during thin film growth, morphological

patterns can form upon strain relaxation. One can grow an additional layer of material on such a rough

surface. Monolayer patterns will unavoidably be affected by the buried topographic pattern because (i) the

compliance tensor of the substrate composite is spatially nonuniform in plane ðx1; x2Þ; (ii) the residual stress
in the first layer (probably due to lattice misfit or thermal expansion mismatch) is nonuniform. Conse-

quently, one can make patterns with spatially varying feature size and orientation. This scheme of using an
external pattern is an example of guided self-assembly (Gao and Suo, 2003a). One variation of this scheme

is shown in Fig. 8(c). A void or inclusion buried underground serves the same purpose.

A recent experiment points out another possibility. Ellmer et al. (2001) studied nitrogen on the Cu(1 0 0)

surface. After annealing, the surface was covered by a regular square lattice of nitrogen islands, approxi-

mately 5 nm across, with the sides parallel to the [0 0 1] direction (consistent with our predictions in Section

4.1). A small amount of gold, pre-deposited on the bare copper surface, changed the elastic properties of the

substrate by forming a marginal region of Au–Cu alloy, as schematically shown in Fig. 8(a). On this Au-

doped surface, nitrogen atoms again formed square lattices, but with the sides parallel to [0 1 1] direction.
So far we don�t know quantitatively how the elastic constants change due to Au-doping. Our calculations in



Fig. 8. Manipulating the monolayer phase patterns by using a substrate: (a) with a marginally doped region; (b) with a buried

topographic pattern; (c) with a buried void or inclusion.
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Section 5 suggest that this new region should prefer different orientations from the Cu(1 0 0) surface. We are

awaiting further experimental development along this line to test our argument.
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Appendix A

One can transform a given elastic stiffness tensor in the coordinates ðx1; x2; x3Þ to ðx; y; x3Þ. The stiffness
components that are related to the plane elastic field in ðx; x3Þ can be used to analytically compute the

eigenvalues pa and matrices A, L, and B (Eshelby et al., 1953; Stroh, 1958; Lekhnitskii, 1963; Ting, 1996).

Nonetheless, numerical calculation is much more convenient, especially when dealing with the layered

structures.

The Eshelby–Stroh–Lekhnitskii representation may break down if the eigenvalue problem is degenerate.

For example, when the material is elastically isotropic, the eigenvalue problem (12) has repeated eigen-

values p1 ¼ p2 ¼ p3 ¼ i, and matrices A, L are singular. The Stroh matrix B ¼ iAL�1, however, has smooth

limit, which is determined as follows. We can introduce a small degree of anisotropy in the stiffness tensor,
and compute the Stroh matrix. By reducing this degree of anisotropy to zero, we can obtain the analytical

form for the Stroh matrix, and similarly for matrices T
 and E
.

Of particular importance is the following set of results for an isotropic material:
B ¼ 1

l

1� m 0 i 1
2
� m

� �
0 1 0

�i 1
2
� m

� �
0 1� m

2
4

3
5; ðA:1Þ

T� ¼
1þ s 0 is
0 1 0

is 0 1� s

2
4

3
5 expðsÞ; ðA:2Þ
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Tþ ¼
1� s 0 �is
0 1 0

�is 0 1þ s

2
4

3
5expð�sÞ; ðA:3Þ
E� ¼ 1

l

1� m þ s
2

0 i
2
1� 2m þ sð Þ

0 1 0

� i
2
1� 2m � sð Þ 0 1� m � s

2

2
4

3
5exp sð Þ; ðA:4Þ
Eþ ¼ 1

l

1� m � s
2

0 i
2
1� 2m � sð Þ

0 1 0

� i
2
1� 2m þ sð Þ 0 1� m þ s

2

2
4

3
5exp ð � sÞ; ðA:5Þ
where s ¼ jd, and l and m are the shear modulus and Poisson�s ratio respectively. These results are given

in the coordinates ðx; y; x3Þ.
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