IITEIIITIOIAL HIUIIIL OF

SOLIDS a
STHIIGTIIIIES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 40 (2003) 6429-6444

Passing stiffness anisotropy in multilayers and its effects
on nanoscale surface self-organization

Y.F. Gao *

Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
Received 9 December 2002

Abstract

A binary monolayer adsorbed on a solid surface can separate into distinct phases that further self-assemble into
various two-dimensional patterns. The surface stresses in the two phases are different, causing an elastic field in the
substrate. The self-organization minimizes the combined free energy of mixing, phase boundary, and elasticity. One can
obtain diverse patterns by using substrates with various crystalline symmetries. Consider the pattern of a set of periodic
stripes. The stripe orientation depends on the anisotropy in surface stress, substrate stiffness, and phase boundary
energy. A more powerful and flexible way is to use a layered substrate. Surface properties designed for the applications
of those patterns can be obtained by choosing appropriate materials and structures for the monolayer and the top layer
of the substrate. The subsequent layers of the substrate provide the required stiffness anisotropy, the effect of which is
passed to the monolayer patterns through the elastic field. We solve the elastic field in the anisotropic, heterogeneous,
three-dimensional half-space by using the Eshelby—Stroh—Lekhnitskii formalism and the Fourier transformation.
Depending on the thicknesses and the degrees of the stiffness anisotropy of the substrate layers, the lowest energy stripes
can have tunable equilibrium size and orientation. We also discuss other possibilities of manipulating the phase patterns
by engineering the elastic field.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

One challenge in nanofabrication is to make large-scale ordered and patterned structures with nanoscale
features, which would open new possibilities for applications, e.g., serving as memories, or as templates for
making devices. Mesoscopic self-organization on solid surfaces offers many opportunities in making such
nanostructures. Experiments have shown that adsorbed monolayers on solid surfaces, when separating into
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distinct phases, can self-assemble into various two-dimensional patterns (Kern et al., 1991; Zeppenfeld et al.,
1995; Pohl et al., 1999; Ellmer et al., 2001). The observed feature sizes of the phase patterns range from
nanometers to hundreds of micrometers, and are usually stable on annealing. The limited tunability of the
phase patterns impedes the use of these nanostructures. In the following, we first briefly review the
mechanism of pattern formation, and then examine how to guide these self-assembled phase patterns into
designed order.

The self-organization minimizes the combined free energy of mixing, phase boundary, and an elastic field
(Alerhand et al., 1988; Ng and Vanderbilt, 1995; Suo and Lu, 2000). Suppose that the monolayer consists of
two atomic species, one of which could be identical to that of the substrate. When the two species have a
large enthalpy of mixing, atoms are more likely to be found near identical atoms than if they were mixed
randomly. Consequently, the monolayer separates into two phases, and the concentration field on the solid
surface becomes nonuniform. The surface stresses in the two phases are different (Ibach, 1997), inducing an
elastic field in the substrate. To relieve the surface stress nonuniformity, large phases will break into small
phases. The total length of phase boundaries, however, increases and so does the phase boundary energy. It
is the competition between the phase boundary energy and the elastic energy that stabilizes the phase
patterns and selects an equilibrium phase size.

Because the surface stress difference in distinct phases is accommodated through the substrate defor-
mation, one immediate way to manipulate the phase patterns is to modify the elastic field. Previously, we
have studied the effect of symmetry breaking of various modes on phase patterns. When the system was
isotropic, there was no preferred orientation in the plane of the monolayer, and therefore irregular patterns
formed. When some form of anisotropy was introduced, the symmetry was broken, and irregular patterns
lined up in some particular directions. We investigated how to obtain diverse patterns by using substrates
with various crystalline symmetries (Lu and Suo, 2002b; Gao and Suo, 2003b). Stripes could orient along
either the crystalline axes, or certain directions off them. The off-axis stripes might organize into a mesoscale
herringbone structure, further relaxing the elastic energy (Lu and Suo, 2002a; Gao et al., 2002). Phase
diagrams were constructed with respect to varying parameters that represented anisotropy in phase
boundary energy, surface stress, and substrate stiffness.

This paper investigates the possibility of manipulating the self-assembled monolayer patterns by using
a layered substrate. Surface stress and phase boundary energy, depending on the short-range interatomic
interactions, can vary considerably with different material and structural selections of the monolayer and
the first substrate layer. The subsequent underlying layers of the substrate provide certain degrees of
stiffness anisotropy, the effect of which is passed to the monolayer patterns through the long-range
elastic field. Those considerations give rise to a large parameter space that can be used to tailor the
experiments.

As illustrated in Section 2, the elastic field in the substrate is coupled with the concentration field on
the substrate surface through the concentration-dependent surface stress. We use the Fourier series to
represent the concentration field of a set of periodic stripes. The equilibrium stripe orientation can be
determined by minimizing a free energy function, as shown in Section 3. This study is concentrated on
how to manipulate the phase patterns by engineering the elastic field, so that the phase boundary energy
is assumed isotropic throughout this paper. The elasticity boundary value problem is solved by using the
Eshelby-Stroh-Lekhnitskii representation (Eshelby et al., 1953; Stroh, 1958; Lekhnitskii, 1963; Suo,
1990; Ting, 1996; Gao and Suo, 2003b). Section 4 assumes that the substrate is a homogeneous material,
and studies the orientation of stripes on the (100) surface of a cubic crystal with anisotropic surface
stress. Section 5 gives the general elastic solution in a layered structure, and studies the stripes on the
substrate of two different isotropic materials, an isotropic material on a cubic crystal, and two cubic
crystals. Any crystal plane and elastic anisotropy can be treated, and the equilibrium size and orientation
are tunable. Section 6 discusses other possibilities to affect the elastic field and manipulate the phase
patterns.
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2. Substrate deformation caused by monolayer concentration nonuniformity

Fig. 1 shows the system to be modeled. The monolayer coincides with the plane (x|, x,). Let a continuous
function C(xi,x,) be the concentration field in the monolayer. The substrate is semi-infinite, occupying the
half space x; < 0. The substrate may be a homogeneous material or a layered structure. The layers are
different in constituting materials or crystalline orientations. We assume that the layer interfaces parallel
with each other, so that the substrate is heterogeneous only in the x; direction.

The surface stress is the excess work per unit area done when the surface enlarges per unit strain (Ibach,
1997). In general, the surface stress is a second-rank tensor f,s. (Greek subscripts run from 1 to 2.) We
assume that the surface stress is linear in the concentration C. That is, when the concentration changes by
AC, the surface stress changes by

Afup = ¢opAC. )

The slope tensor ¢,; depends on the materials system of the adlayer and several marginal atomic layers of
the substrate. It can be measured by the wafer curvature method, or determined by electronic structure
calculations. We treat it phenomenologically in this study.

As illustrated in Fig. 1, the principal components of the slope tensor, ¢, and ¢,, are assumed to be in the
direction x; and x,. Following Gao and Suo (2003b), we define the surface stress anisotropy parameter as

b=
R_—m , (2)

where ¢ = 4/ dﬁ + qﬁ measures the magnitude of the slope tensor. R is in the range —1 <R < 1. When
R =0, ¢, = ¢,, and the slope tensor is isotropic. We should point out that even if the substrate is elastically
isotropic, the surface stress could be anisotropic because of the possibly anisotropic atomic structure in the
adlayer (Ng and Vanderbilt, 1995; Ibach, 1997).

When the concentration field is uniform, from (1), the surface stress is also uniform, so that the semi-
infinite substrate is unstrained. When the concentration field is nonuniform, corresponding to concentra-
tion patterns, the surface stress is also nonuniform, causing an elastic field in the substrate. The elasticity
boundary value problem is specified as follows.

X3

two phases in the monolayer I x2

"0,

¢,
L3
d layer I

I’
¢2 layer II

>

Fig. 1. Schematic representation of the monolayer—substrate system. The substrate can be a layered structure.
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Assume that the deformation in the substrate is infinitesimal, and each layer of the substrate is
linearly elastic and generally anisotropic. The stress tensor o;; relates to the elastic displacement vector u;
as

0jj = CijkiUk 1, (3)

where, / stands for differentiation with respect to the coordinate x;. Latin subscripts run from 1 to 3. The
repeated subscripts imply the summation convention. For each layer, the stiffness tensor c¢;;; is known once
the material and its crystallographic orientation are specified.

The equations of mechanical equilibrium are standard, i.e., g;;; = 0. Together with (3), we can write the
field equations that govern the elastic displacements:

CijkiUk,1; = 0. (4)

We will have N sets of such equations if there are N layers. The traction vector t = (03, 032, 0’33)T on the
substrate surface (x3 = 0) is (Suo and Lu, 2000; Gao and Suo, 2003b)

oc  aCc \'
t= <¢1@—xl’¢26_x2’0> . (5)

The normal traction o33 is zero because there is no z-component of the surface stress tensor. There could be
other mechanisms leading to the normal component (Gurtin and Murdoch, 1976; Murdoch, 1976;
Thomson et al., 1986). However, our above argument is generally true for adsorbate-induced surface
stresses (Ibach, 1997). This fact tells us that any normal deformation will not affect the elastic free energy, as
will be shown in Eq. (6) shortly. Assume that the layers are ideally bonded at the interfaces, and we will
have 2(N — 1) continuity conditions. Another boundary condition is that the stress tensor vanishes as
X3 — —OQ.

Consequently, for any given concentration field C(x;,x,), the elastic equilibrium defines an elasticity
boundary value problem in the semi-infinite, anisotropic, heterogeneous substrate with prescribed
surface traction. We combine the Eshelby—Stroh—Lekhnitskii formalism (Eshelby et al., 1953; Stroh,
1958; Lekhnitskii, 1963; Suo, 1990; Ting, 1996) and the Fourier transformation to determine the elastic
field.

One can easily confirm that the elastic energy stored in the volume of the substrate is [(1/2)03,u,d4, a
positive quantity. The integral extends over the entire substrate surface. Since the traction boundary
condition is fixed, in building up the elastic field in the substrate, the traction does work f o3,u, dA. This
work comes from the surface stress difference between distinct phases, and reduces the total free energy of
the monolayer—substrate system. Consequently, the elastic free energy is

1 1
Glelastic = /EGSauadA _/(73fxuo(dA = _/ZGSauadAa (6)

which can also be confirmed from the Legendre transformation. The elastic free energy is always negative.
The larger the elastic deformation in the substrate, the lower the free energy of the monolayer—substrate
system.

With a given traction boundary condition (5), the strain and the displacement fields are linear in the
compliance tensor. Consequently, the elastic free energy is also linear in the compliance tensor, and is
quadratic in the slope tensor ¢,;. The last observation shows that the sign of the slope tensor does not
matter.

The total free energy of the monolayer—substrate system can be written as

1
G:/ (gm+gb203txuzx)d14- (7)
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The term g, represents the free energy of mixing, and is a function of the concentration. The phase
boundary energy, represented by the term gy, in general is a function of the concentration and the con-
centration gradient. Detailed forms of g, and g, are unimportant to this work.

3. Equilibrium orientation of periodic stripes

Consider a set of periodic stripes as shown in Fig. 1. The concentration is now nonuniform, and con-
strained to vary in the direction x. The orientation angle 0 is measured from the x; axis to the x axis.
Represent the concentration field by a Fourier series,

$ 12nmx Fo 12nm
C(x) = Z C, exp( 7 ) = Z C, exp[T(hlxl + hoxs) |, (8)

where x = h,x,, (hy,h) = (cos 6,sin 0) is the direction vector of axis x in coordinates (x,x,), and A is the
period of the concentration field. To ensure the concentration is real-valued, we require that C_,) = C,,
where a bar on the top of a quantity denotes the complex conjugate. The average concentration C, remains
constant, since no atoms leave or enter the monolayer during annealing.

From (5) and (8), the traction vector on the substrate surface (x; = 0) becomes

. 2 2unC, 2nn
o3 = il Z T oXP [—(hl)ﬂ +hzxz)}

— A
: X 2unC, i2nm 9)
o3 = ig,h; Z T oXp |:T(hlx1 + hzxz)}» (

033 = 0.

As will become clear later, such a Fourier representation will simplify the solution of the elasticity boundary
value problem.

The free energy density of mixing, gy, is independent of 6. We assume that the phase boundary energy is
isotropic in this study, so that g is also independent of 0. So long as the 0-dependence is concerned, Gegic
represents the free energy.

The elastic free energy per unit area is calculated by the elastic free energy in a period divided by the
period, namely,

P 1 ("1
Geasic:_T 5 03a otdx' 10
last 2 /0 ) O3,U (10)
Consequently, the equilibrium orientation of a set of periodic stripes can be determined by minimizing Eq.
(10) as a function of § with varying period A, Fourier coefficients C, (n # 0), and parameters that represent
anisotropy.

4. Stripes on a homogeneous substrate

Consider a substrate of a single material with a given crystalline orientation. This substrate is subject to
surface tractions (9), and therefore the elastic field is a plane field in the plane spanned by x; and the vector
(hy, ). From (9), since generally ¢, # 0, the substrate deformation is a combination of the inplane and
antiplane strain field. We solve this plane field by using the Eshelby-Stroh—Lekhnitskii formalism. The
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solution method discussed below basically follows Gao and Suo (2003b), and will be extended to a layered
structure in Section 5.
Since the field equations (4) are homogeneous, we look for solution of the form

up=A,f(2), z=x+px3=hx;+hyx;+ pxs. (11)

Here f is a one-variable function, p a scalar, and 4; a vector. As will be clear shortly, p is a complex
number. Substitute (11) into (4), write p = A3, and we obtain that

CijlmhjhmAl = 0. (12)

In deriving (12), we have eliminated the factor d*f/dz2. To obtain a nontrivial solution of vector 4;, the
coefficient matrix ¢;j;.4;h,, must be singular, i.e., det(c;mhnh;) = 0. This is a generalized eigenvalue problem
with p being the eigenvalue and A4, the eigenvector.

Remember 4; and &, are direction cosines of axis x, and A3 = p, so that det(c;y,h,h;) is a sixth-order
polynomial in p with real coefficients. If p were also real, the matrix c;;;,,1,,#; would be positive-definite (due
to the requirement that the strain energy be positive), and the linear equations (12) would have only trivial
solution. Therefore, the six roots form three pairs of complex conjugate. Denote the three eigenvalues with
positive imaginary parts by p,, a = 1, 2, 3, and the corresponding eigenvectors by A;,. Once the stiffness
tensor ¢, is specified, for a given direction (%1, 4,), one can solve this eigenvalue problem (12) numerically.

Let fi(z1), f2(22), f3(z3) be three arbitrary analytic functions with respect to the three complex variables,
z, = hixy + hoxo + paxs, a = 1, 2, 3, respectively. The general solution of the displacement field is a linear
superposition:

u, = ZAlafa(Za) + Zzlaﬁt(za)' (13)

This form ensures that the displacement is real-valued. The traction vector on any plane normal to the
X3 axis, t = (013,023, 0%) ", is

g3 = ZLiaf,;(Za) + Zzia];:(za); (14)

where the three vectors L;, are defined as
Li, = (canhy + canhy + Ci3l3pg)Alg~ (15)

No summation convention is implied over underscored, repeated subscripts.

The Stroh matrix B = iAL™' has been proven to be a positive-definite Hermitian (Stroh, 1958). Split the
matrix into the real and the imaginary parts, B = M + iN, so that M is symmetric and positive-definite, and
N is antisymmetric. These matrices have the same dimension as the compliance tensor. Though explicit
expressions can be derived, for convenience, these matrices are calculated numerically.

To determine the three functions fi(z;), f2(z2), f3(z3), we adopt the analytic continuation method de-
veloped by Suo (1990). Let { be a complex variable of the form { = x| + hyx» + gx3, where ¢ is an ar-
bitrary complex number with a positive imaginary part. Use the vector notation, f({) = [£1(0), /2(0), £5(0)]".
On the plane x; = 0, the four complex variables, z;, z», z3, {, all equal 4;x; + Ax,, so that the traction vector
and the displacement vector are

u = Af(hx,) + Af(h,x,), (16)

t = Lf (h,x,) + Lf (h,x,). (17)

The traction on the substrate surface has been prescribed by a Fourier series in Eq. (9). By the principle
of linear superposition, we consider only one real-valued component. That is, for a given pair of +n, the
traction vector is
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t = aexp(ir|x; + irxoxp) + aexp(—ikx; — iKxz), (18)

where i = V-1, k, = kh,, kK = 2nn/2, and
a = (i¢,hkC,, i, hKC,, 0)". (19)

The analytic functions f({) must both satisfy the traction boundary conditions (17) and (18), and vanish
in the substrate far below the surface, namely, f({) — 0 as x; — —oo. The latter comes from the analytic
continuation and the observation that the stress tensor, as well as fi(z1), f2(z2), f3(z3), is vanishing with
increasing depth. An inspection gives the solution

Lf'({) = aexp(—ix{). (20)

The fact that g in { = hyx; + hx; + gx; has positive imaginary part ensures that f({) — 0 as x; — —oc.
From (16) and (20), the displacement on the substrate surface is

B . . B . .
u= >4 exp(irix; + ikpxy) + >a exp ( — irpx; — iKoxy). (21)
K K

From (18) and (21), for one real-valued Fourier component of the traction boundary condition (9), the
elastic energy stored in the substrate per period is given by
K1K» m/x2 /i 1 aTMﬁ

S ~t' - udx;dx, = . 22
(27'5)2 —n/Kky J—m/K) 2 1 ? K ( )

Consequently, the elastic free energy per unit area, with respect to arbitrary concentration field on the
substrate surface, can be written as

~ , 2 ey
Glastic = _¢ @(TTC> Z (nC5)7 (23)

n=1

where
© = m'Mm, (24)
m = (hcosw, hysinw, 0). (25)

In Eq. (23), O is the only term that depends on 6. Consequently, —® represents the free energy so long as
the 0-dependence is concerned. Since the matrix M only depends on the stiffness tensor of the substrate,
dimensionless vector m on direction 6 and the surface stress anisotropy, the equilibrium stripe orientation
Ocq, at which —® minimizes, is independent of the concentration field.

On an elastically isotropic substrate, depending on the degree of the surface stress anisotropy (measured
by the parameter R), the lowest energy stripes can be either parallel to, or at an angle from, the principal
axis of the surface stress tensor. This phenomenon has been studied, and a physical interpretation has been
given (Lu and Suo, 2002a; Gao et al., 2002). We next discuss the orientation of stripes on the (1 00) surface
of a cubic crystal with anisotropic surface stress.

4.1. The (100) surface of a cubic crystal with anisotropic surface stress

The stiffness tensor of a cubic crystal has three independent components, i.e., ¢i, ¢12, ¢44 in the ab-
breviated notation. Define two dimensionless parameters:

n=cn/cn, (26)
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Fig. 2. (a) —c11© as a function of 0 for stripes on the Cu(100) surface. (b) The equilibrium orientation 0., as a function of R.

et 2cq
Ci1

14 1. (27)
The requirement that the strain energy be positive for any arbitrary strain tensor places the following re-
strictions: —0.5 <7 < 1,and n — 1 < ¢ < 4o00. The parameter ¢ measures the stiffness anisotropy of a cubic
crystal. For an elastically isotropic material, £ = 0, and n = v/(1 — v), where v is Poisson’s ratio. For Cu,
n =0.721, and & = 0.6164; for Mo, n = 0.3826, and ¢ = —0.1391.

Fig. 2(a) plots —c; O as a function of 6 for the Cu(1 0 0) surface, and Fig. 3(a) for the Mo(1 00) surface.
Symmetry operations dictate that once 0.4 is an equilibrium orientation, —0.q and 90° — 0,y are also. The
multiplicity can be removed by restricting 0° < 0eq <45° and —1 <R <0. Depending on R, there are dif-
ferent kinds of behaviors. When R = 0, ¢, = ¢,, the surface stress is isotropic. The strain and displacement
fields are linear in the compliance tensor. Everything else being equal, because of the stiffness anisotropy,
stripes in different orientations can induce different amount of elastic energy in the substrate. The shear

0.9 . . 45 , : r .
(a) Mo (100) (b) Mo (100)
-1k B
30} J
g
15} -
R =-0.9037 R.=.0.0471
-1.6 L L 0 . . . .
0 30 60 90 -1 0.8 06 0.4 02 0

]

R

Fig. 3. (a) —c1; @ as a function of 0 for stripes on the Mo(100) surface. (b) The equilibrium orientation 0., as a function of R.
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Fig. 4. Phase diagram of stripe orientation with varying R and ¢ for the (100) surface of a cubic crystal (n = 0.5).

modulus in any (x,x3) plane is the same, but the tensile modulus in x direction is not. Consequently, stripes
with concentration field varying along the most compliant direction in tension will relax elastic energy the
most. The tensile modulus in x direction reaches the minimum at 0.q = 0° when & > 0, or 0.4 = 45° when
¢ < 0 (Lu and Suo, 2002b), corresponding to the curves in Figs. 2(a) and 3(a) when R = 0.

We then examine the combined effect of stiffness anisotropy and surface stress anisotropy. Fig. 2(b) plots
the equilibrium orientation 04 as a function of the surface stress anisotropy parameter R for stripes on the
Cu(100) surface, and Fig. 3(b) for stripes on the Mo(1 00) surface. As shown in Fig. 2(a), for stripes on the
Cu(100) surface, when —0.961 < R < 0, the equilibrium orientation is 0.4 = 0°, and the equilibrium stripes
are along the ¢, axis. When R is slightly larger than R. = —0.961, a new minimum appears at a nontrivial
angle. When R < R, this minimum becomes lower than that at § = 0°. Consequently, the transition be-
tween the along-axis to off-axis stripes on the Cu(1 00) surface obeys the Landau theory of phase transition
of the first-order, as indicated by the dashed line in Fig. 2(b). For stripes on the Mo(100) surface, when
—0.0471 < R<0or —1 <R < —0.9037, the equilibrium stripes are off-axis. Between the two regions of off-
axis stripes is the one of along-¢, stripes. As shown by Fig. 3(a), when —0.0471 < R <0, the function —c;, @
minimizes at a nontrivial angle. As R goes to R, = —0.0471, 0.4 goes to 0°. Consequently, the transition
between along-axis to off-axis stripes on the Mo(1 00) surface obeys the Landau theory of phase transition
of the second-order.

Fig. 4 shows a phase diagram of the orientation of stripes on the (100) surface of a cubic crystal, with
n = 0.5, and varying R and ¢&. When ¢ > 0, similar to the Cu(100) surface, we see the transition from the
along-axis stripes to the off-axis ones. When ¢ < 0, similar to the Mo(100) surface, we see the transition
from the off-axis stripes, to the along-axis stripes, and back to the off-axis stripes.

The orientation of stripes on the (1 1 0) surface of a cubic crystal with anisotropic surface stress has been
studied in Gao and Suo (2003b). Results presented there and in this paper suggest that one should observe
various stripe orientations in different monolayer—substrate systems.

5. Stripes on a layered substrate

The geometrical conventions used in this section have been shown in Fig. 1. Consider a substrate of two
layers. Layer I occupies the space —d < x3 < 0, and layer II extends to —oo. In each layer, the general
solution of the elastic field in the plane spanned by vector (4, 4,) and axis x; has been given in Egs. (13) and
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(14). The remaining task is to determine the three functions f(z1), f2(z2), f3(z3) for each layer by the
boundary and continuity conditions. The solution method developed in this section is quite general, and is
likely to find applications in other phenomena, such as thin films, ferroelastic multilayers.

Different from (20), let the solution in the first substrate layer be

Lif(0) = Pexp(-in0) + Qexp(ixd), 8)
A =P exp(-ind) — 12 exp(in), (29)

where P and Q are two constant vectors to be determined.

From (28) and (29), one can readily obtain £}, ({), f1,(0), f3(0), and f11({), f12({), f13({). One then replaces
the variable to f],(z1), fi(z2), fi;(z3), and fi1(z1), fi2(22), fi3(z3), and calculates the displacement field from
(13) and the stress field from (14). The calculation gives the displacement and stress fields in the layer I:

EP-E S EP-EQ . . .
up = ITIQ exp(irx; + iKoxp) + I—IQ exp(—irx; — iraxs), (30)
t = (T;F + TTQ) exp(irx; + irx;) + (TI—P + Trﬁ) exp (— ik — iKoxs), (1)
where matrices T; and E; are
3
Tiy = 3 LuaLyy) exp(—ikpirs),
a=1
3
TlJlrj = ZLUaLfa} exp(iKprax3 ),
E (32)
Epy=1)  Aualy,;exp(—ikpixs),
a=1
3
B =i AI[aL;l} exp(ikpraxs).

a=1

Matrices T; are dimensionless, and matrices E; have the dimension of the compliance tensor. Matrices E;
relate to matrices T; as E; = B;T;. One can obtain T; from T, , E; from E/, by replacing variable x; to
—x3, and vice versa. See Appendix A for the explicit expressions of those matrices when the material is
isotropic.

One can easily confirm from (32) that Ty, _, =1, and E{|, _, = By. (L is the identity matrix.) For one
real-valued Fourier component (18) of the traction vector on the substrate surface, the above consideration
and Eq. (31) leads to

P+Q=a. (33)

At the layer interface x3 = —d, the continuity conditions give rise to u; = uy; and t; = ty. (The uniform
residual stresses in the substrate layers have only trivial Fourier components for any nontrivial wave-
number, and therefore won’t affect the above continuity conditions.) Layer II itself is semi-infinite, so that
by Section 4, uj; and ty; at the interface must satisfy the same relation as that between (18) and (21). The
above considerations lead to

E;P - ETG =By (TfP + TT@), (34)

where matrices T; and E; are all evaluated at x; = —d.
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Define two bimaterial matrices:

H, =B, - By, (35)

H2 = E] + B][. (36)

The latter is a positive-definite Hermitian.
From Egs. (33)—(36), vectors P and Q can be determined by solving

X -Y P 0
b e)- () &
where X = H,T{ |, __, and Y = H2T1+|x3:7d.

Consequently, for one real-valued Fourier component, the elastic energy stored in the substrate per
period is given by

/Ky /K 1 TFf
K:IKZ/ / *tT lld.X1d)C2 a, (38)

/Ky T[/IC] K

where F = Re{BI(X +Y)'Y = Bi(X +Y) 'X}. Re stands for the real part of a complex number. Not only
does the matrix F depend on (%, %,) and the stiffness tensors of the two layers, also it is a function of xd.
Denote F = F<Clijkl; Cllijkls 9, Kd)

When layer I and II are of the same material and crystalline orientation, H; = 0, so that P =a, Q =0,
and F = M, recovering the results in Eqgs. (18), (21), and (22). When layer 11 is a rigid material, B = 0, so
that X = E l,— ¢ and Y = E li,—_4- When layer II is absent or extremely compliant, Eq. (34) becomes
TP+TQ -0 at x3 = —d, sowecanletXf Ty, sand Y = T|7

When the concentration field is represented as Eq. (8) from (9), (10), (18) (19), and (38), the elastic free
energy per unit area can be written as

G =~ ( )3 (nc20,) (39)
elastic i < nn)s
where
2nnd
0, = m'F (Clijkla Cllijkl s 9,T>m, (40)

and vector m has been given by Eq. (25). Only the terms @, in Eq. (39) depend on 6, but they are also
functions of n. To minimize Eq. (39) with respect to 6, one needs to know all the Fourier components C, of
the concentration field, which in turn depend on @, and the detailed forms of g, and g, in Eq. (7).
Nonetheless, one single Fourier mode of the concentration field already gives a good approximation (Gao
et al., 2002). Consequently, to determine the equilibrium orientation of a set of periodic stripes on a layered
substrate, we minimize —@), as a function of 0 with varying surface stress anisotropy R, stiffness tensors of
the two layers, and d/A (the normalized thickness of the first layer). In the next three subsections, we
concentrate on stiffness anisotropy, so that the surface stress tensor is assumed isotropic and fixed.

5.1. A layered substrate of two isotropic materials

Recall the inspection that the elastic free energy is linear in the compliance tensor since the traction
boundary condition is prescribed. If one uses a thin elastic substrate, the added compliance amplifies the
effect of elasticity, reducing the equilibrium phase size. One can even tune the equilibrium phase size by the
following hypothetical experiment. At a certain time, periodic stripes of period /A are at equilibrium on a
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Fig. 5. —140, as a function of d// with varying shear modulus ratio /g of the two dissimilar isotropic materials in the substrate.

homogeneous semi-infinite (or thick) substrate. Cut the substrate at x; = —d, and bond the thin layer—
monolayer system with another material that becomes layer II in Fig. 1. On annealing, atoms in the
monolayer will relocate on the substrate surface, and stripes will reach a new equilibrium period A'. The
ratio of the elastic constants and the thickness of the first layer can be varied, giving rise to a tunable /1’.

In this section, the two substrate layers are assumed to be elastically isotropic, so that the stripe ori-
entation is of no concern here. The elastic free energy is approximately measured by —y;@,. Consequently,
if this quantity decreases, we will obtain a stronger elastic interaction and, accordingly, a smaller equi-
librium phase size, i.e., 2’ < 1. Let Poisson’s ratios equal, v; = v;; = 0.3. Fig. 5 plots —;@, as a function of
d/2 with varying shear modulus ratio u;;/y;. We next discuss the results.

When the substrate is of a single isotropic material (1 /gy = 1), obviously, —u; @, does not change with
respect to d/A. This is our reference state. When d/4 is fixed, if layer II is more compliant (uy /1y < 1),
—1;0; becomes smaller; if layer II is stiffer (u /1 > 1), —p; 01 becomes larger. When py; /g is fixed, with
decreasing d/A, the function —yu;@; increases if py;/p; > 1, or decreases if u;;/p < 1. Consequently, to
amplify the equilibrium phase size (' > 1), one can use a compliant material for layer II; to shrink the size
(X' < 2), a stiff material for layer II. In both cases, the purpose is more easily satisfied by making the first
layer as thin as possible. Also Fig. 5 shows that an extremely compliant material or nothing for layer 11
(uy1/ 1y = 0) can remarkably change the elastic interaction, and the effect is unprecedented for a layered
substrate even with a very small shear modulus ratio, e.g., y;/p; = 0.1.

5.2. A layered substrate of an isotropic material on a cubic crystal

Certain kinds of atoms can only form patterns on surfaces of some specific materials, which may not
provide the desired orientation preference. Without sacrificing the properties determined by the monolayer
and layer I, we can choose a layer II with the required stiffness anisotropy. This section shows that the
stiffness anisotropy of layer II can be passed to the monolayer patterns through the elastic field.

As an example, consider a layered substrate of an isotropic material on the Cu(1 00) surface. Let the x;
axis be in the direction (010), and x, in (001). Assume that the ¢;; component of the stiffness tensor of the
isotropic material is equal to that of the copper. Fig. 6 plots —c;;©; as a function of 0 with different
thicknesses of the isotropic layer. When d/A = 0, —¢;;©; minimizes at 0, = 0° and 0., = 90°, retaining the
orientation preference of the Cu(100) surface (as predicted by Section 4.1). When d// is sufficiently large,
—c110 becomes a constant, because there is no orientation preference for the isotropic layer.
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Fig. 6. —¢|10, as a function of 0 with varying d/A. The substrate consists of an isotropic material (layer I) and a cubic crystal (layer IT).
5.3. A layered substrate of two cubic crystals

In general, the stripe orientation depends on the thicknesses and the degrees of the stiffness anisotropy of
the substrate layers. Let us consider a set of stripes on the Cu(100) surface. Cut the substrate at plane
x3 = —d, rotate the thin layer-monolayer system about the x; axis by 45°, and bond it with the remaining
bulk copper. This fictitious substrate is used to illustrate the competition between two layers of different
orientation preferences. On annealing, stripes may or may not rotate by 45°. Let the coordinates x; coincide
with the crystalline axes of layer II. A tensor transformation gives the stiffness components in layer I.
Obviously, when layer I is very thick, the stripe orientation follows the preference of layer I, i.e., 0, = 45°.
When layer I is very thin, the orientation follows the preference of layer II, i.e., 0.q = 0° and 0,4 = 90°.

Fig. 7(a) plots —c;; @, as a function of 0 with varying d/4, illustrating several kinds of behaviors. When
d/A < 0.03858, —c;©, minimizes at 0., = 0° and 90°. When 0.03858 < d/4 < 0.0399, —c¢;;©, minimizes
at certain angles off the axes. When d/4 > 0.0399, —c,1©, minimizes at 0.4 = 45°. Fig. 7(b) plots the

1.14 T 45 T
(a) A fictitious substrate of two cubic crystals (b) \
d/A=0.0399
-1.15 30 1
Gl z
- a°
? d/A=0.03858
1.16f . 150 i g
H
H
1
H
d/2=0.035 '
d/A=0.03858 E A fictitious substrate of two cubic crystals]
1
N\
-1.17 v L 0 = -
0 30 60 90 0.035 0.04 0.045
*] d/n

Fig. 7. (a) —¢11©, as a function of 0 with varying d/A. (b) The equilibrium orientation 0. as a function of d//. The substrate is

fictitious (see text).
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equilibrium orientation 6.4 as a function of d/A. Due to symmetry, we restrict 0° < 04 < 45°. The transitions
between the along-axis stripes and off-axis stripes can be of the first- or second-order.

6. Discussion

Self-organization on solid surfaces has been recognized as a promising way of growing uniform nano-
structures with long-range orders and regular sizes. The self-assembled phase patterns can be manipulated
by engineering the long-range elastic field. The system is analogous with an oscillator. A static force applied
to the oscillator does not change its vibrating frequency. Similarly, applying a uniform stress field in the
plane of the layer, e.g., through bending, does not affect the patterns. Nonetheless, one can use a substrate
with various crystalline symmetries. The orientation of a set of periodic stripes only depends on the an-
isotropy in the surface stress and the substrate stiffness tensor. Furthermore, this paper shows the possi-
bilities of a layered substrate. In this case, the orientation dependence involves the concentration field
within the stripes, but can be determined approximately by using the leading Fourier mode of the con-
centration field. The equilibrium phase size and orientation are tunable with various material and structural
selections of the substrate layers. The elastic field in the anisotropic, heterogeneous, three-dimensional half-
space is solved by extending the Eshelby—Stroh—Lekhnitskii formalism. The Fourier representation sim-
plifies the solution and enables our parametric study.

Our calculations (Sections 5.2 and 5.3) show that in order for the stiffness anisotropy of layer II to be in
effect pronouncedly, the thickness of the first layer /4 must be very thin compared with the feature size of
those patterns. Experiments tell us that typically ¢ ~ 4 N/m, ¢;; ~ 10" N/m?, and A ranges from na-
nometers to micrometers. Take 2 ~ 10 nm, |¢;; @] ~ 1, and C; = 0.4, and we can obtain that the elastic free
energy per unit area (39) is about 1 J /m2, which is on the same order of 1 eV free energy per atomic site on a
solid surface (Somorjai, 1994). In order for the orientation preference to be effective, the variation of
function —c; @, with respect to angle 6 should be also comparable with this magnitude. From Fig. 6, we
can conclude that d/4 must be smaller than 0.1, which says that if 1 is 100 nm, the thickness of the thin layer
should be about 10 nm.

Though our cut-and-bond method may not be realistic to make a substrate with ultrathin layers, there
are many other ways, e.g., through epitaxial growth etc. One can tune the strain and stress inside the layers
by the lattice misfit between the different layers. The patterns, however, won’t be affected if the interfaces
between layers are flat. (The reason has been stated in the first paragraph of this section.) By contrast, we
can use the scheme proposed by Fig. 8(b). It is well known that during thin film growth, morphological
patterns can form upon strain relaxation. One can grow an additional layer of material on such a rough
surface. Monolayer patterns will unavoidably be affected by the buried topographic pattern because (i) the
compliance tensor of the substrate composite is spatially nonuniform in plane (x,x;); (ii) the residual stress
in the first layer (probably due to lattice misfit or thermal expansion mismatch) is nonuniform. Conse-
quently, one can make patterns with spatially varying feature size and orientation. This scheme of using an
external pattern is an example of guided self-assembly (Gao and Suo, 2003a). One variation of this scheme
is shown in Fig. 8(c). A void or inclusion buried underground serves the same purpose.

A recent experiment points out another possibility. Ellmer et al. (2001) studied nitrogen on the Cu(100)
surface. After annealing, the surface was covered by a regular square lattice of nitrogen islands, approxi-
mately 5 nm across, with the sides parallel to the [0 0 1] direction (consistent with our predictions in Section
4.1). A small amount of gold, pre-deposited on the bare copper surface, changed the elastic properties of the
substrate by forming a marginal region of Au—Cu alloy, as schematically shown in Fig. 8(a). On this Au-
doped surface, nitrogen atoms again formed square lattices, but with the sides parallel to [0 1 1] direction.
So far we don’t know quantitatively how the elastic constants change due to Au-doping. Our calculations in
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Fig. 8. Manipulating the monolayer phase patterns by using a substrate: (a) with a marginally doped region; (b) with a buried
topographic pattern; (c) with a buried void or inclusion.

Section 5 suggest that this new region should prefer different orientations from the Cu(100) surface. We are
awaiting further experimental development along this line to test our argument.
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Appendix A

One can transform a given elastic stiffness tensor in the coordinates (x,x»,x3) to (x,y,x3). The stiffness
components that are related to the plane elastic field in (x,x;) can be used to analytically compute the
eigenvalues p, and matrices A, L, and B (Eshelby et al., 1953; Stroh, 1958; Lekhnitskii, 1963; Ting, 1996).
Nonetheless, numerical calculation is much more convenient, especially when dealing with the layered
structures.

The Eshelby-Stroh—Lekhnitskii representation may break down if the eigenvalue problem is degenerate.
For example, when the material is elastically isotropic, the eigenvalue problem (12) has repeated eigen-
values p; = p» = ps = i, and matrices A, L are singular. The Stroh matrix B = iAL"', however, has smooth
limit, which is determined as follows. We can introduce a small degree of anisotropy in the stiffness tensor,
and compute the Stroh matrix. By reducing this degree of anisotropy to zero, we can obtain the analytical
form for the Stroh matrix, and similarly for matrices T* and E*.

Of particular importance is the following set of results for an isotropic material:

1—v 0 i(%—v)
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l—-s 0 -—is
T"=] 0 1 0 |exp(-s), (A3)
—is 0 14
| l1—v+3 0 i(1-2v+s)]
E =- 0 1 0 exp (s), (A.4)
" —1(l=2v=s5) 0 1—-v—3
| 1—v—% 0 f(1-2v—y)]
Ef=- 0 1 0 exp(—s), (A.5)
Fl-i—2v+s) 0 1-v+s

where s = kd, and u and v are the shear modulus and Poisson’s ratio respectively. These results are given
in the coordinates (x,y,x3).
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